Fikhtengolts, G.M.; Kantorovich, L.V... Line and multiple integrals. Leningrad-Moscow, GIRT, 1937, 295 pp. (Russian).
Goluzin, G.M. Geometric theory of functions of a complex variable. Providence, R.I.: American Mathematical Society. VI, 676 pp. (1969). (English transl.. from Russian).
Kantorovich, L.V. Integrals and Fourier series. LGU, Leningrad, 1940, 248 pp. (Russian).
Kantorovich, L.V.; Vulikh, B.Z.; Pinsker, A.G. Functional analysis in partially ordered spaces. GITTL, Moscow-Leningrad, 1950, 548 pp. (Russian).
Kantorowitsch, L.W.; Akilow, G.P. (Kantorovich, L.V.; Akilov G.P.) Funktionalanalysis in normierten Raeumen. (Functional analysis in normed spaces). 2. ber.. Mathematische Lehrbuecher und Monographien. Bd. XVII. Berlin: Akademie-Verlag. XV, 622 S. 7 Abb. (1978). (German transl. from Russian).
Kantorovich, L.V.; Akilov G.P. Functional analysis. 2nd ed. Pergamon Press, Oxford, XIV, 589 pp.1982. (English transl. from Russian).
Lebedev, N.A. Integration on manifolds. LGU, Leningrad, 1983, 55 pp. (Russian).
Natanson, I.P. Constructive function theory. Vol. I: Uniform approximation. IX, 232 pp. (1964); Vol. 2: Approximation in mean. 176 pp. (1965); Vol. III: Interpolation and approximation. Quadratures. 176 pp. (1965). New York: Frederick Ungar Publishing Co.. (English transl. from Russian).
Natanson, I.P. Theorie der Funktionen einer reellen Veranderlichen. [Theory of functions of a real variable] Mathematische Lehrbucher und Monographien, I. Abteilung: Mathematische Lehrbucher [Mathematical Textbooks and Monographs, Part I: Mathematical Textbooks], VI. Akademie-Verlag, Berlin, 1981, xii+590 pp, (German transl. from the 1957 Russian edition.)
Smirnow, W.I. (Smirnov, V.I.) Lehrgang der hoeheren Mathematik.
Teil I. 515 S. (1982); Teil II. 618 S. (1990); Teil III/1. 283 S.;
Teil IV. XII, 708 S. (1982); Teil V. 545 S. (1991).
Hochschulbuecher fuer Mathematik, Bd. 1. Berlin: VEB Deutscher Verlag
der Wissenschaften. (German transl. from Russian).
Smirnov, V. I. Corso di matematica superiore. Nuova Biblioteca di Cultura. Serie scientifica. Roma: Editori Riuniti. Mosca: Edizioni Mir. (~1979). (Italian transl. from Russian).
Smirnov, V.I.; Lebedev, N.A. Functions of a complex variable.
Constructive theory.
London: Iliffe Books Ltd. IX, 488 pp. (1968) (English
transl. from Russian).
Vladimirov, D.A. Boolesche Algebren. (Boolean algebras). 2nd ed. Mathematische Lehrbuecher und Monographien. II. Abt.: Mathematische Monographien. Bd. 29. Berlin: Akademie-Verlag. VIII, 245 S., (1978). (German transl. from Russian).
Vladimirov, D.A. Boolean Algebras in Analysis. Kluwer Academic Publshers. 2002, xxii+604 pp. (English transl. from Russian).
Vulikh, B.Z. Introduction to the theory of partially ordered spaces. Groningen: Wolters-Noordhoff Scientific Publications Ltd., XV, 387 pp. (1967). (English transl. from Russian).
Vulikh, B.Z. Introduction to functional analysis for scientists and technologists. International Series of Monographs on Pure and Applied Mathematics. 32. Oxford etc.: Pergamon Press. XI, 404 pp. (1963). (English transl. from Russian).
Vulikh, B.Z. A brief course in the function theory of one real variable. "Nauka", Moscow., 1973. (Russian).
Complex analysis, operators, and related topics. The S. A. Vinogradov memorial volume. Edited by Victor P. Havin and Nikolai K. Nikolski. Operator Theory: Advances and Applications, 113. Birkhauser Verlag, Basel, 2000. x+408 pp.
Havin, V. (Khavin, V.) (with Jöricke, B.) The uncertainty principle in harmonic analysis. Springer-Verlag, Berlin, 1994, xii+543 pp. (English).
Havin V., Nikolskii N. Linear and Complex Analysis Problem Book 3. Part I (Lecture Notes in Math.,1573, 489 pp.), Part II (LNM 1574, 507 pp.), Springer-Verlag, Berlin, 1994.
Khavin, V.P. Introduction to analysis. Differential and integral calculus of functions of one real variable. Leningrad, LGU, 1989, 448 pp. (Russian).
Makarov, B. M.; Goluzina, M. G.; Lodkin, A. A.; Podkorytov, A. N.
Selected problems in real analysis. Nauka, 1992. 432 pp.
(Russian).
English translation: Selected problems in real analysis. Translations of Mathematical Monographs,
107. American Mathematical Society, Providence, RI, 1992. x+370 pp.
Makarov, B. M.; Goluzina, M. G.; Lodkin, A. A.; Podkorytov, A. N.
Selected problems in real analysis.
St. Petersburg, Nevskii Dialekt - BHV, 2004, 624 pp
(2nd Russian edition).
French translation from the 2nd Russian edition:
Problèmes d'analyse réelle.
Cassini, Paris, 2010, 593 pp
(Trad. de la 2nde édition russe).
Makarov, B. M. (with Bukhvalov, A.V.; Korotkov, V.B.; Kusraev, A.G.; Kutateladze, S.S.) Vector Lattices and Integral Operators, S.S.Kutateladse (ed.), Kluwer Acad. Publishers, 1996. (English transl. from Russian).
Makarov, B. M.; Florinskaya, L.V.; Khavin, V.P. Measure and integration theory (in 3 issues). Leningrad, LGU, 1974-1977. (Russian)
Nikol'skij, N.K. Treatise on the shift operator. Spectral function theory. (English). Grundlehren der Mathematischen Wissenschaften, 273. Berlin etc.: Springer-Verlag. XI, 491 pp. (1986). (English transl. from Russian).
Makarov. B.M.; Podkorytov, A. N. Smooth Functions and Maps. M., MTsNMO, 2020, 344 pp.
English translation: Smooth Functions and Maps. Springer, 2021, XIX + 284 pp.
Makarov. B.M.; Podkorytov, A. N. Lections on Real Analysis,
BHV-Petersburg, 2011, 688 pp. (Russian);
English translation: Real Analysis: Measures, Integrals and Applications.
Springer, 2013, XIX + 772 pp.
Solomyak, M.Z. (with Birman M.S.) Spectral theory of self-adjoint
operators in Hilbert space. Mathematics and Its Applications. Soviet
Series. 5. Dordrecht etc.: Kluwer Academic
Publishers, xvi, 301 S. (1987). (English transl. from Russian).
Vinogradov O. L., Gromov A.L. A course in Mathematical Analysis P. 1.St. Petesburg University Eds., 2009, 228 pp. P. 2. 2012, 323 pp. (Russian).
Vinogradov O. L. Mathematical Analysis. Part 1.St. Petesburg University Eds., 2009, 270 pp. Part 2., 2012, 223 pp. (Russian).
Vinogradov O. L. Mathematical Analysis. BHV-Petersburg, 2017, 752 pp. (Russian).
Vulikh, B.Z.; Kolomoitseva, Z.D.; Safronova, G.P. Analysis. Series. Integration theory for one-variable functions. Functional series. Leningrad, LGU, 1970. (Russian).
Vulikh, B.Z.; Podkorytov, A. N. An introduction to analysis. In.: Selected chapters in analysis and higher algebra. Leningrad, LGU, 1981, pp. 78-128. (Russian).
Zhuk, V.V. Approximation of periodic functions. Leningrad, LGU, 1982. (Russian).
Zhuk, V.V.; Natanson, G.I. Trigonometric Fourier series and elements of approximation theory. Leningrad, LGU,1983 (Russian).
Zhuk, V.V. Strong approximation of periodic functions. Leningrad, LGU, 1989 (Russian).
Zhuk, V.V. (with Kuzyutin, V.F.). Approximation of functions and numeric integration. St. Petersburg, LGU, 1995. (Russian).
Last modified: 02.09.2021